排序不等式的定义和应用技巧
一、排序不等式的定义和应用技巧
1、排序不等式
设$a_1leqslant a_2leqslant cdotsleqslant a_n$,$b_1leqslant b_2leqslant cdotsleqslant b_n$为两组实数,$c_1leqslant c_2leqslant cdotsleqslant c_n$为$b_1leqslant b_2cdotsleqslant b_n$的任一排列,则$S=a_1c_1+a_2c_2+a_3c_3+cdots+a_nc_n$称为数组$(a_1,a_2,cdots,a_n)$和$(b_1$,$b_2$,$cdots$,$b_n)$的乱序和,其中按相反顺序相乘所得积的和$S_1$=$a_1b_n$+$a_2b_{n-1}$+$a_3b_{n-2}$+$cdots$+$a_nb_1$称为反序和,按相同顺序相乘所得积的和$S_2$=$a_1b_1$+$a_2b_2$+$a_3b_3$+$cdots$+$a_nb_n$称为顺序和。
2、排序不等式定理
定理:(排序不等式,又称排序原理)设$a_1≤a_2leqslant cdotsleqslant a_n$,$b_1leqslant b_2leqslant cdotsleqslant b_n$为两组实数,$c_1,c_2,cdots,c_n$为$b_1,b_2,cdots,b_n$的任一排列,则$a_1b_n+a_2b_{n-1}+a_3b_{n-2}+cdots+a_nb_1$$leqslant a_1c_1+a_2c_2+a_3c_3+cdots+a_nc_n$$leqslant a_1b_1+a_2b_2+a_3b_3+cdots+a_nb_n$,当且仅当$a_1=a_2=cdots=a_n$或$b_1=b_2=cdots=b_n$时,反序和等于顺序和。
排序不等式可简记为:反序和$≤$乱序和$≤$顺序和。
3、排序不等式的应用技巧
(1)使用排序不等式时,必须存在有大小顺序的两组数列(或代数式),从而探究对应项乘积和的大小关系。
(2)本质:两组数列顺序同向单调(同增或同减)时,对应项乘积和最大,反向单调(一增一减)时,对应项乘积和最小,当其中一组数列为常数数列时,对应项乘积和不变。
(3)排序原理的思想:在解答数学问题时,常常涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序,我们可以利用排序原理的思想方法,将它们按一定顺序排列起来,继而利用不等关系来解题。
二、排序不等式的相关例题
设$a,b,c$为正数,求$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$的最小值为___
A.$ rac{3}{2}$
B.2
C.$ rac{5}{2}$
D.3
答案:A
解析:不妨设$a≥b≥c$, 于是$a+b≥c +a≥b+c$。又∵$ageqslant bgeqslant c$,$ rac{1}{b+c}≥ rac{1}{c+a}≥ rac{1}{a+b}$,∴由排序不等式:顺序和≥乱序和得$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$$≥ rac{b}{b+c}+ rac{c}{c+a}+ rac{a}{a+b}$,$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$$≥ rac{c}{b+c}+ rac{a}{c+a}+ rac{b}{a+b}$,两式相加得$2left( rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b} ight)≥3$,∴$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}≥ rac{3}{2}$。当且仅当$a=b=c$时,等号成立。∴$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$的最小值为$ rac{3}{2}$。
相关文章
- 2024年河北环境工程学院招生章程
- 福建商学院一流本科专业建设点名单
- 2024西湖大学选科要求对照表 各专业需要选考什么科目
- 2024年山东大学强基计划招生简章
- 北京京北职业技术学院怎么样 好不好
- 2024年山西音乐类投档分数线
- 2023江西职业技术大学录取分数线
- 2024云南公办大学有哪些?云南所有公办大学名单一览表
- 计算机教育专业考研方向分析
- 2024年重庆医药高等专科学校招生章程
- 农业机械化及其自动化专业考研方向分析
- 哪些大学有海洋渔业科学与技术专业
- 2025云南农业大学研究生招生专业目录及考试科目
- 2024天津职业技术师范大学考研分数线
- 2025南京邮电大学研究生招生计划
- 安徽工业经济职业技术学院怎么样 好不好
- 武汉理工大学双一流学科名单有哪些
- 多少分能上山西工程职业学院
- 生态地质调查专业就业方向与就业岗位有哪些
- 多少分能上浙江工贸职业技术学院